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A bstact —The use of high order derivatives is ap-
plied to obtain parametrized solutions in terms of
frequency and shape for the analysis of microwave
structures using 3D edge finite elements. These so-
lutions are derived from the derivatives with respect to
the frequency and/or geometric parameters of single
frequency and/or geometric finite element solutions.
These techniques allows the broad frequency band ex-
trapolation as well as the shape optimization.

I. INTRODUCTION

Electromagnetic simulations can now be directly
used to analyze microwave structures such as
waveguide discontinuities, planar circuits, filters, beam
forming networks, antenna feed networks. However,
many computations have to be performed to get solu-
tions in the whole frequency band when using harmonic
simulators, and specially when optimization is further
needed in terms of certain critical structure shape pa-
rameters. Some techniques such as the Asymptotic-
Wave-Expansion (AWE)[1] or Model-Based Parameter
Estimation (MBPE)[2] have been proposed to extrap-
olate the frequency response of a structure from in-
formation computed at one or several points. For the
geometry optimization, the Space Mapping (SM) tech-
nique [3] can be judged as an interesting way to effi-
ciently consider repeated geometry changing configu-
rations.

In this paper, high order derivatives techniques are
used to generate frequency and geometry parametrized
solutions of microwave structure problems based on
3D edge finite elements techniques. Derivatives with
respect to these parameters are then calculated from
finite element solutions [4]. The proposed method is
very similar to MBPE when considering only a fre-
quency parameter. But our approach extends to in-
clude a whole set of parameters including geometric
ones. To our knowledge, the extrapolation of solutions
for geometric parameters has not ever been presented.
The basic principles are given. Three examples are
provided to demonstrate the efficiency of the method.
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II. THEORY

A. Edge finite element formulation

The 3D finite element method is based on the use of
edge elements. The formulation is recalled briefly for
the presentation of the parametrization method as it
has already been presented elsewhere [4]. A microwave
structure can be modeled as an inhomogeneous domain
bounded by walls and ports, P;, i = 1..N, defining an
N-port. The variational form for the electric field (1):
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is discretized with edge elements basis functions giv-

ing N linear systems to be solved (2):

Ge; = J;, i=1.N. (2)

The vector &; contains the degrees of freedom (cir-
culations of the electric field along the edges) related
to the excitation vector J;. The S-parameters are then
obtained from these independent solutions. The terms
of the S matrix are given by (3):
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Sij = jw,qui €; — 6ij. (3)

B. Parametrization method

Let’s state some definitions on the parametrization
problem :

e the vector p of the parameters : shape and/or fre-
quency

e the solution matrix E = [e7, ..., ey]

e the excitation matrix J = [J, ..., Jy]

e the solution FE is given by the solution of the linear
system :
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The aim of this method [5] is to build a Taylor ex-
pansion or a Pade approximation of the solution, by
computing high order derivatives of E(p). Taking the
derivative of (4) subsequently, these quantities are com-
puted by solving linear systems :

G(p)E'(p) = J'(p) — G'(p)E(p)

G(p).E™ (p) = T (p) — i CL,GYEM ) (p) (5)

All the derivatives E™(p) are computed using the
same factorized matrix G(p). Compared to a standard
analysis which needs factorizing and solving a new lin-
ear system at each frequency and geometric configura-
tion, the overcost due to the computation of derivatives
is low.

However, the Taylor expansion can meet some sin-
gular points, which reduces its radius of convergence.
The singular points are explained by the presence of
cut-off frequencies of the waveguide and complex reso-
nances of the structure. Therefore, to cope with these
poles, we use Pade approximation, which is a rational
function of two polynomials :
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III. APPLICATIONS

A. Mitered bend
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Fig. 1. E-plane mitered bend configuration

A first case study concerns an E-plane mitered bend
shown in Fig.l. The S-parameters are computed for
a frequency f = 12.5GHz and a length L = 7.4mm.
Then the parametrized solution with respect to fre-
quency f and length L is obtained. Fig.2 shows the
return loss as a function of both f and L. The whole
frequency band of interest is obtained for various val-
ues of the parameter L. For example, Fig.3 gives the
return loss extracted from the surface solution shown

in Fig.2 for three values of L. In the same figure are
also plotted results given by a direct calculation for
L = 7.4mm.The comparison shows the excellent agree-
ment between the extrapolated solution and the direct
ones. For a given frequency, the optimal of return loss
can be directly determined by considering its variation
as a function of the length L (Fig.4). The optimal
length L at this frequency is about 7.5mm. In Fig.4,
the direct F.E. solutions are also plotted for compar-
isons.
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Fig. 2. Return loss of the mitered bend versus the frequency and
the length L
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Fig. 3. Return loss of the mitered bend versus frequency for
three values of parameter L
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Fig. 4. Return loss of the mitered bend versus the length L :
parametrized solution and direct solutions

B. Stub filter
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Fig. 5. Stub filter

As discussed previously, a Taylor series expansion
may be insufficient to extrapolate over the whole fre-
quency band. On the contrary, Pade expansion is able
to catch the poles of the S-parameters giving a broad
band parametrization. This is particularly pointed out
with structures like filters which exhibit more com-
plex responses. A stub filter is here considered (Fig.5).
Fig.6 shows the return loss of the stub filter over the
whole frequency band obtained from the F.E. solution
calculated at a single frequency f = 12GHz. For this
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Fig. 6. Return loss of the stub filter

example, we use a Pade approximation, with orders 11
for P(p) and 9 for Q(p). Very good agreement, less
than 1%, is achieved between the parametrized solu-
tion and a frequency swept solution. For this example,
CPU times are :

e For the standard analysis : 123 seconds per fre-

quency

e For the parametric analysis ( order 20) : 383 sec-
onds

C. Orthomode Transducer
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Fig. 7. Orthomode Transducer
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Fig. 8. Geometric parameters for the septum (symmetric part
shown)

The design of an orthomode transducer like the one
shown in Fig.7 is considered. The most critical require-
ment in this structure is that the return loss Soo for the
horizontal polarization must be better than 20dB over
a large frequency band (40% bandwidth). This value
depends on the septum shape. The geometric parame-
ters of the septum are shown in Fig.8.The return loss
as a function of the geometry parameters is then cal-
culated giving a geometry parametrized solution. The
optimal values of the geometric parameter is obtained
by exploring the parametrized solution. Fig.9 shows
an example of the Sy surface as a function of the geo-
metric parameters at a frequency f = 17.5GHz. The
frequency response near an optimal solution is shown
in Fig.10 using a Pade expansion of order 11 and 9.
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Fig. 9. Return loss for the OMT versus the geometric parameters
at a frequency of 17.5 GHz

-10.0

-12.0
-14.0

-16.0 \
-18.0 \
-20.0
-22.0 \
-24.0 /
-26.0 /

[~

|S22| (dB)

-28.0

-30.

0
100 110 120 130 140 150 160 170 180 19.0 20.0

Frequency (GHz)

Fig. 10. Return loss for the OMT versus frequency
IV. CONCLUSION

A 3D microwave structure can be characterized in
terms of frequency and geometry shape parameters by
extrapolating from the solutions at single frequency
and geometry solutions. The method avoids the closely
sampling of the parametric space both in frequency and
geometry configuration and thus reduces significantly
the computation times. It could also enable the easy
derivation of analytical models from the parametrized
finite element solutions. The 3D edge element method
enhanced with high order derivatives paves the way to
shape optimization in a broad frequency band.
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